Dieses Bild zeigt Stephanie Bauer

Stephanie Bauer

MSc.

PhD-Student
Institut für Halbleiteroptik und Funktionelle Grenzflächen
Semiconductor Epitaxy Group

Kontakt

Allmandring 3
70569 Stuttgart
Deutschland
Raum: 1.011

  1. 2023

    1. Nawrath, C., Joos, R., Kolatschek, S., Bauer, S., Pruy, P., Hornung, F., Fischer, J., Huang, J., Vijayan, P., Sittig, R., Jetter, M., Portalupi, S. L., & Michler, P. (2023). Bright Source of Purcell-Enhanced, Triggered, Single Photons in the Telecom C-Band. Advanced Quantum Technologies. https://doi.org/10.1002/qute.202300111
  2. 2022

    1. Sittig, R., Nawrath, C., Kolatschek, S., Bauer, S., Schaber, R., Huang, J., Vijayan, P., Pruy, P., Portalupi, S. L., Jetter, M., & Michler, P. (2022). Thin-film InGaAs metamorphic buffer for telecom C-band InAs quantum dots and optical resonators on GaAs platform. Nanophotonics. https://doi.org/doi:10.1515/nanoph-2021-0552
  3. 2021

    1. Kolatschek, S., Nawrath, C., Bauer, S., Huang, J., Fischer, J., Sittig, R., Jetter, M., Portalupi, S. L., & Michler, P. (2021). Bright Purcell Enhanced Single-Photon Source in the Telecom O-Band Based on a Quantum Dot in a Circular Bragg Grating. Nano Letters, 0(0), Article 0. https://doi.org/10.1021/acs.nanolett.1c02647
    2. Bauer, S., Wang, D., Hoppe, N., Nawrath, C., Fischer, J., Witz, N., Kaschel, M., Schweikert, C., Jetter, M., Portalupi, S. L., Berroth, M., & Michler, P. (2021). Achieving stable fiber coupling of quantum dot telecom C-band single-photons to an SOI photonic device. Applied Physics Letters, 119(21), Article 21. https://doi.org/10.1063/5.0067749
  4. 2020

    1. Hepp, S., Hornung, F., Bauer, S., Hesselmeier, E., Yuan, X., Jetter, M., Portalupi, S. L., Rastelli, A., & Michler, P. (2020). Purcell-enhanced single-photon emission from a strain-tunable quantum dot in a cavity-waveguide device. Appl. Phys. Lett., 117(25), Article 25. https://doi.org/10.1063/5.0033213
  5. 2018

    1. Hepp, S., Bauer, S., Hornung, F., Schwartz, M., Portalupi, S. L., Jetter, M., & Michler, P. (2018). Bragg grating cavities embedded into nano-photonic waveguides for Purcell enhanced quantum dot emission. Opt. Express, 26(23), Article 23. https://doi.org/10.1364/OE.26.030614
  6. 2012

    1. Syperek, M., Yakovlev, D. R., Yugova, I. A., Misiewicz, J., Jetter, M., Schulz, M., Michler, P., & and M. Bayer. (2012). Electron and hole spins in InP/(Ga,In)P self-assembled quantum dots. http://prb.aps.org/abstract/PRB/v86/i12/e125320
  7. 2006

    1. Schwab, M., Kurtze, H., Auer, T., Bestermann, T., Bayer, M., Wiersig, J., Bear, N., Gies, C., Jahnke, F., Reithmaier, J. P., Forchel, A., Benyoucef, M., & Michler, P. (2006). Radiative emission dynamics of quantum dots in a single cavity micropillar. /brokenurl#NULL
  8. 2005

    1. Ulrich, S. M., Benyoucef, M., Michler, P., Baer, N., Gartner, P., Janke, F., Schwab, M., Kurtze, H., Bayer, M., Fafard, S., & and Z. Wasilewski. (2005). Correlated photon-pair emission from a charged single quantum dot. http://prb.aps.org/abstract/PRB/v71/i23/e235328
  9. 2004

    1. Wiersig, J., Baer, N., Gartner, P., Jahnke, F., Benyoucef, M., Ulrich, S. M., Michler, P., & Forchel, A. (2004). Optical modes of semiconductor micropillars: A theory-experiment comparison. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1366902&tag=1
    2. Ulrich, S. M., Benyoucef, M., Michler, P., Baer, N., Gartner, P., Janke, F., Schwab, M., Kurtze, H., Bayer, M., Fafard, S., & and Z. Wasilewski. (2004). Single-photon and photon pair emission from individual (In,Ga)As quantum dots. /brokenurl#NULL
  10. 2002

    1. Vehse, M., Meinertz, J., Lange, O., Michler, P., Gutowski, J., Bader, S., Brüderl, G., Lell, A., & and V. Härle. (2002). Analysis of gain saturation behavior in GaN based quantum well lasers. http://onlinelibrary.wiley.com/doi/10.1002/pssc.200390083/abstract
    2. Röwe, M., Michler, P., Gutowski, J., Bader, S., Brüderl, G., Kümmler, V., Weimar, A., Lell, A., & and V. Härle. (2002). Influence of the Layer Design on the Far Field Pattern in GaN Based Laser Structures. http://onlinelibrary.wiley.com/doi/10.1002/1521-396X%28200212%29194:2%3C414::AID-PSSA414%3E3.0.CO;2-V/abstract
    3. Schweizer, H., Gräbeldinger, H., Dumitru, V., Jetter, M., Bader, S., Brüderl, G., Weimar, A., Lell, A., & Härle, V. (2002). Laterally coupled InGaN/GaN DFB laser diodes. Wiley Online Library. https://doi.org/10.1002/1521-396X(200208)192:2<301::AID-PSSA301>3.0.CO;2-D
    4. Vehse, M., Michler, P., Gösling, I., Röwe, M., Gutowski, J., Bader, S., Lell, A., Brüderl, G., & and V. Härle. (2002). Influence of barrier height on optical gain and transparency density in GaN based laser structures. http://apl.aip.org/resource/1/applab/v80/i5/p755_s1
  11. 2001

    1. Vehse, M., Michler, P., Gösling, I., Röwe, M., Gutowski, J., Bader, S., Lell, A., Brüderl, G., & and V. Härle. (2001). Correlation of Barrier Height and Nonradiative Carrier Recombination and the Consequences for Optical Gain in GaN Based Laser Structures. http://onlinelibrary.wiley.com/doi/10.1002/1521-396X%28200111%29188:1%3C109::AID-PSSA109%3E3.0.CO;2-T/abstract
    2. Röwe, M., Michler, P., Gutowski, J., Bader, S., Hahn, B., Kümmler, V., Weimar, A., Lell, A., & and V. Härle. (2001). Influence of the Transverse and Lateral Waveguide on the Far Field Pattern in GaN Based Laser Structures. http://onlinelibrary.wiley.com/doi/10.1002/1521-396X%28200111%29188:1%3C65::AID-PSSA65%3E3.0.CO;2-W/abstract
    3. Vehse, M., Michler, P., Lange, O., Röwe, M., Gutowski, J., Bader, S., Lugauer, H.-J., Brüderl, G., Weimar, A., Lell, A., & Härle, V. (2001). Optical gain and saturation in nitride-based laser structures. http://apl.aip.org/resource/1/applab/v79/i12/p1763_s1
  12. 2000

    1. Michler, P., Lange, O., Vehse, M., Gutowski, J., Bader, S., Hahn, B., Lugauer, H.-J., & Härle, V. (2000). Gain saturation in (In,Ga)N/GaN/( Al , Ga )N laser structures. http://onlinelibrary.wiley.com/doi/10.1002/1521-396X%28200007%29180:1%3C391::AID-PSSA391%3E3.0.CO;2-N/abstract
  13. 1994

    1. Sternschulte, H., Thonke, K., Sauer, R., Münzinger, P. C., & and P. Michler. (1994). The 1.681 eV luminescence center in chemical-vapor-deposited homoepitaxial diamond films. http://prb.aps.org/abstract/PRB/v50/i19/p14554_1
Zum Seitenanfang