This image shows Roman Bek

Roman Bek

Dr.

Wissenschaftlicher Mitarbeiter
Institut für Halbleiteroptik und Funktionelle Grenzflächen
Semiconductor Epitaxy Group

Contact

Allmandring 3
70569 Stuttgart
Deutschland
Room: 1.003

  1. 2024

    1. Strobel, T., Kazmaier, S., Bauer, T., Schäfer, M., Choudhary, A., Sharma, N. L., Joos, R., Nawrath, C., Weber, J. H., Nie, W., Bhayani, G., Wagner, L., Bisquerra, A., Geitz, M., Braun, R.-P., Hopfmann, C., Portalupi, S. L., Becher, C., & Michler, P. (2024). High-fidelity distribution of triggered polarization-entangled telecom photons via a 36 km intra-city fiber network. Optica Quantum, 2(4), Article 4. https://doi.org/10.1364/OPTICAQ.530838
  2. 2023

    1. Engel, L., Kolatschek, S., Herzog, T., Vollmer, S., Jetter, M., Portalupi, S. L., & Michler, P. (2023). Purcell enhanced single-photon emission from a quantum dot coupled to a truncated Gaussian microcavity. Applied Physics Letters, 122(4), Article 4. https://doi.org/10.1063/5.0128631
    2. Abbas, R. A., Sabry, Y. M., Omran, H., Huang, Z., Zimmer, M., Jetter, M., Michler, P., & Khalil, D. (2023). Modelling and experimental characterization of double layer InP/AlGaInP quantum dot laser. Optical and Quantum Electronics, 56(2), Article 2. https://doi.org/10.1007/s11082-023-05276-9
  3. 2022

    1. Bozzio, M., Vyvlecka, M., Cosacchi, M., Nawrath, C., Seidelmann, T., Loredo, J. C., Portalupi, S. L., Axt, V. M., Michler, P., & Walther, P. (2022). Enhancing quantum cryptography with quantum dot single-photon sources. Npj Quantum Information, 8(1), Article 1. https://doi.org/10.1038/s41534-022-00626-z
    2. Dusanowski, Ł., Nawrath, C., Portalupi, S. L., Jetter, M., Huber, T., Klembt, S., Michler, P., & Höfling, S. (2022). Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-28328-2
    3. Woods, J. R. C., Gorecki, J., Bek, R., Richardson, S. C., Daykin, J., Hooper, G., Branagan-Harris, E., Tropper, A. C., Wilkinson, J. S., Jetter, M., Michler, P., & Apostolopoulos, V. (2022). Coherent waveguide laser arrays in semiconductor quantum well membranes. Opt. Express, 30(18), Article 18. https://doi.org/10.1364/OE.457577
    4. Grossmann, M., Jetter, M., & Michler, P. (2022). Nonlinear reflectivity of AlGaInP SESAMs for mode locking in the red spectral range. Opt. Express, 30(12), Article 12. https://doi.org/10.1364/OE.453638
  4. 2021

    1. Wang, Q., Maisch, J., Tang, F., Zhao, D., Yang, S., Joos, R., Portalupi, S. L., Michler, P., & Smet, J. H. (2021). Highly Polarized Single Photons from Strain-Induced Quasi-1D Localized Excitons in WSe2. Nano Letters, 21(17), Article 17. https://doi.org/10.1021/acs.nanolett.1c01927
    2. Bek, E., Jetter, M., & Michler, P. (2021). Mode-locked AlGaInP VECSEL for the red and UV spectral range: Vol. In Vertical External Cavity Surface Emitting Lasers – VECSEL Technology and Applications. Wiley-VCH, Weinheim, 305 – 320.
  5. 2020

    1. van Loock, P., Alt, W., Becher, C., Benson, O., Boche, H., Deppe, C., Eschner, J., Höfling, S., Meschede, D., Michler, P., Schmidt, F., & Weinfurter, H. (2020). Extending Quantum Links: Modules for Fiber- and Memory-Based Quantum  Repeaters. http://arxiv.org/abs/1912.10123
    2. Kriso, C., Kress, S., Munshi, T., Grossmann, M., Bek, R., Jetter, M., Michler, P., Stolz, W., Koch, M., & Rahimi-Iman, A. (2020). Wavelength and Pump-Power Dependent Nonlinear Refraction and Absorption in a Semiconductor Disk Laser. IEEE Photonics Technology Letters, 32(2), Article 2. https://doi.org/10.1109/LPT.2019.2957875
    3. Maisch, J., Vural, H., Jetter, M., Gerhardt, I., Portalupi, S., & Michler, P. (2020). Controllable Delay and Polarization Routing of Single Photons. Advaced Quatum Technologies. https://doi.org/201900057
    4. Großmann, M., Bek, R., Jetter, M., & Michler, P. (2020). Stable fundamental and dual-pulse mode locking of red-emitting VECSELs. Laser Physics  Letters, 17(6), Article 6. https://iopscience.iop.org/article/10.1088/1612-202X/ab881f/meta
    5. Vural, H., Portalupi, S., & Michler, P. (2020). Perspective of self-assembled InGaAs quantum-dots for multi-source quantum implementations. Applied Physics Letters, 117(3), Article 3. https://doi.org/10.1063/5.0010782
  6. 2019

    1. Hepp, S., Jetter, M., Portalupi, S., & Michler, P. (2019). Semiconductor Quantum Dots for Integrated Quantum Photonics. Advanced Quantum Technologies. https://doi.org/10.1002/qute.201900020
    2. Schmidt, E., Reutter, E., Schwartz, M., Vural, H., Ilin, K., Jetter, M., Michler, P., & Siegel, M. (2019). Characterization of a photon-number resolving SNSPD using Poissonian and  sub-Poissonian light. https://doi.org/10.1109/TASC.2019.2905566
    3. Weber, J. H., Kambs, B., Kettler, J., Kern, S., Maisch, J., Vural, H., Jetter, M., Portalupi, S. L., Becher, C., & Michler, P. (2019). Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters. Nature Nanotechnology, 14, 23–26. https://doi.org/10.1038/s41565-018-0279-8
    4. Kriso, C., Kress, S., Munshi, T., Grossmann, M., Bek, R., Jetter, M., Michler, P., Stolz, W., Koch, M., & Rahimi-Iman, A. (2019). Microcavity-enhanced Kerr nonlinearity in a vertical-external-cavity surface-emitting laser. Opt. Express, 27(9), Article 9. https://doi.org/10.1364/OE.27.011914
    5. Portalupi, S., Jetter, M., & Michler, P. (2019). InAs quantum dots grown on metamorphic buffers as non-classical light sources at telecom C-band: a review. Semicond. Sci. Technol, 34(5), Article 5. https://iopscience.iop.org/article/10.1088/1361-6641/ab08b4
  7. 2018

    1. Sartison, M., Engel, L., Kolatschek, S., Olbrich, F., Nawrath, C., Hepp, S., Jetter, M., Michler, P., & Portalupi, S. L. (2018). Deterministic integration and optical characterization of telecom O-band quantum dots embedded into wet-chemically etched Gaussian-shaped microlenses. Appl. Phys. Lett., 113(3), Article 3. https://doi.org/10.1063/1.5038271
  8. 2017

    1. Kahle, H., Mateo, C. M., Bek, R., Jetter, M., & Brauch, U. (2017). Heat sink sandwich extends wavelength for semiconductor membrane laser. LASER FOCUS WORLD, 53(6), Article 6.
    2. Bek, R., Grossmann, M., Kahle, H., Koch, M., Rahimi-Iman, A., Jetter, M., & Michler, P. (2017). Self-mode-locked AlGaInP-VECSEL. APPLIED PHYSICS LETTERS, 111(18), Article 18. https://doi.org/10.1063/1.5010689
    3. Mirkhanov, S., Quarterman, A. H., Kahle, H., Bek, R., Pecoroni, R., Smyth, C. J. C., Vollmer, S., Swift, S., Michler, P., Jetter, M., & Wilcox, K. G. (2017). DBR-free semiconductor disc laser on SiC heatspreader emitting 10.1 W at 1007 nm. Electronics Letters, 53(23), Article 23. https://doi.org/10.1049/el.2017.2689
    4. Kahle, H., Mateo, C. M., Brauch, U., Bek, R., Jetter, M., Graf, T., & Michler, P. (2017). Novel semiconductor membrane external-cavity surface-emitting laser. SPIE Newsroom. https://doi.org/10.1117/2.1201703.006864
  9. 2016

    1. Kahle, H., Mateo, C. M. N., Brauch, U., Bek, R., Schwarzbäck, T., Jetter, M., Graf, T., & Michler, P. (2016). Gain chip design, power scaling and intra-cavity frequency doubling with LBO of optically pumped red-emitting AlGaInP-VECSELs. /brokenurl#NULL
    2. Mateo, C. M. N., Brauch, U., Kahle, H., Bek, R., Schwarzbäck, T., Jetter, M., Ahmed, M. A., Michler, P., & Graf, T. (2016). Efficiency and power scaling of in-well and multi-pass pumped AlGaInP-VECSELs. /brokenurl#NULL
    3. Hargart, F., Roy-Choudhury, K., John, T., Portalupi, S. L., Schneider, C., Höfling, S., Kamp, M., Hughes, S., & Michler, P. (2016). Probing different regimes of strong field light–matter interaction with semiconductor quantum dots and few cavity photons. New Journal of Physics, 18(12), Article 12. http://stacks.iop.org/1367-2630/18/i=12/a=123031
    4. Kahle, H. P., Mateo, C. M. N., Brauch, U., Tatar-Mathes, P., Bek, R., Jetter, M., Graf, T., & Michler, P. (2016). Semiconductor membrane external-cavity surface-emitting laser (MECSEL). Optica, 3(12), Article 12.
  10. 2015

    1. Baumgaertner, S., Kahle, H., Bek, R., Schwarzbaeck, T., Jetter, M., & Michler, P. (2015). Comparison of AlGaInP-VECSEL gain structures. JOURNAL OF CRYSTAL GROWTH, 414, 219–222. https://doi.org/10.1016/j.jcrysgro.2014.10.016
    2. Stadler, M., Kahle, H., Bek, R., Huang, Z., Jetter, M., & Michler, P. (2015). Poster:Towards AlGaInP-based electrically-pumped VECSELs emitting in the red spectral range.
    3. Bek, R., Baumgaertner, S., Sauter, F., Kahle, H., Schwarzbaeck, T., Jetter, M., & Michler, P. (2015). Intra-cavity frequency-doubled mode-locked semiconductor disk laser at    325 nm. OPTICS EXPRESS, 23(15), Article 15. https://doi.org/10.1364/OE.23.019947
    4. Kahle, H., Baumgärtner, S., Sauter, F., Bek, R., Schwarzbäck, T., Jetter, M., & and P. Michler. (2015). Talk:High-power (>400 mW) laser emission at 332 nm of frequency-doubled, optically pumped AlGaInP disk laser with an optimized quantum well structure.
    5. Kahle, H., Mateo, C. M. N., Jäger, M., Weinspach, K., Baumgärtner, S., Brauch, U., Bek, R., Schwarzbäck, T., Jetter, M., Graf, T., & Michler, P. (2015). Degradation studies and pump optimization of optically pumped red-emitting AlGaInP-VECSELs. /brokenurl#NULL
    6. Bek, R., Kersteen, G., Kahle, H., Schwarzbäck, T., Jetter, M., & Michler, P. (2015). Talk:Quantum dot based mode-locked AlGaInP-VECSEL.
    7. Bek, R., Kersteen, G., Kahle, H., Schwarzbäck, T., Jetter, M., & Michler, P. (2015). Quantum dot based mode-locked AlGaInP-VECSEL. /brokenurl#NULL
  11. 2014

    1. Bek, R., Kersteen, G., Kahle, H., Schwarzbäck, T., Jetter, M., & Michler, P. (2014). All quantum dot mode-locked semiconductor disk laser emitting at 655 nm. Applied Physics Letters, 105(082107), Article 082107. https://doi.org/10.1063/1.4894182
    2. Baumgärtner, S., Kahle, H., Bek, R., Schwarzbäck, T., Jetter, M., & Michler, P. (2014). Poster:Comparison of AlGaInP-VECSEL gain structures.
    3. Baumgärtner, S., Kahle, H., Bek, R., Schwarzbäck, T., Jetter, M., & Michler, P. (2014). Talk:Gainstrukturen für AlGaInP-basierte Halbleiterscheibenlaser im roten Spektralbereich.
    4. Kahle, H., Bek, R., Heldmaier, M., Schwarzbäck, T., Jetter, M., & Michler, P. (2014). High optical output power in the UVA range of a frequency-doubled, strain-compensated AlGaInP-VECSEL. Applied Physics Express, 7(092705), Article 092705. http://dx.doi.org/10.7567/APEX.7.092705
    5. Bek, R., Daghestani, N. S., Kahle, H., Schwarzbäck, T., Jetter, M., Cataluna, M. A., & Michler, P. (2014). Femtosecond mode-locked red AlGaInP-VECSEL. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1840291
  12. 2013

    1. Schwarzbäck, T., Bek, R., Kahle, H., Jetter, M., & and Peter Michler. (2013). Talk: SESAM mode-locked red AlGaInP semiconductor disk laser emitting at 665 nm.
    2. Koroknay, E., Rengstl, U., Bommer, M., Jetter, M., & Michler, P. (2013). Site-controlled growth of InP/GaInP islands on periodic hole patterns in GaAs substrates produced by microsphere photolithography. Journal of Crystal Growth, 370, 146–149. https://doi.org/10.1016/j.jcrysgro.2012.09.058
    3. Bek, R., Kahle, H., Schwarzbäck, T., Jetter, M., & Michler, P. (2013). Mode-locked red-emitting semiconductor disk laser with sub-250 fs pulses. Applied Physics Letters, 103(242101), Article 242101. https://doi.org/10.1063/1.4835855
    4. Schwarzbäck, T., Bek, R., Hargart, F., Kessler, C. A., Kahle, H., Koroknay, E., Jetter, M., & Michler, P. (2013). Talk:Red quantum dot based semiconductor disk laser.
    5. Schwarzbäck, T., Bek, R., Hargart, F., Kessler, C. A., Kahle, H., Koroknay, E., Jetter, M., & Michler, P. (2013). Talk:InP quantum dot based semiconductor disk laser.
    6. Kahle, H., Bek, R., Rengstl, U., Schwarzbäck, T., Jetter, M., & Michler, P. (2013). Strain compensated 10x2 quantum well AlGaInP-VECSEL emitting below 660 nm frequency doubled for UV output up to 260 mW. /brokenurl#NULL
    7. Schwarzbäck, T., Bek, R., Hargart, F., Kessler, C. A., Kahle, H., Koroknay, E., Jetter, M., & Michler, P. (2013). InP quantum dots used as gain media for a red emitting VECSEL. /brokenurl#NULL
    8. Schwarzbäck, T., Bek, R., Kahle, H., Rengstl, U., Hargart, F., Kessler, C. A., Koroknay, E., Jetter, M., & and P. Michler. (2013). Talk:Epitaxy of AlGaInP based semiconductor disk lasers: wells, dots, frequency doubling and mode locking.
    9. Schwarzbäck, T., Rengstl, U., Niederbracht, H., Bek, R., Kahle, H., Jetter, M., & and Peter Michler. (2013). Talk:Thermisches Management einer QW-Membran im Hinblick auf Leistungsskalierung roter Halbleiterscheibenlaser.
    10. Schwarzbäck, T., Bek, R., Hargart, F., Kessler, C. A., Kahle, H., Koroknay, E., Jetter, M., & Michler, P. (2013). High-power InP quantum dot based semiconductor disk laser exceeding 1.3 W. Applied Physics Letters, 102(092101), Article 092101. https://doi.org/10.1063/1.4793299
    11. Schwarzbäck, T., Kahle, H., Jetter, M., & Michler, P. (2013). Strain compensation techniques for red AlGaInP-VECSELs: Performance comparison of epitaxial designs. Journal of Crystal Growth, 370, 208–211. https://doi.org/10.1016/j.jcrysgro.2012.09.051
  13. 2012

    1. Schwarzbäck, T., Kahle, H., Bek, R., Jetter, M., & and Peter Michler. (2012). Talk:Frequency doubled AlGaInP-VECSEL with high output power at 331 nm and a large wavelength tuning range in the UV.
    2. Schwarzbäck, T., Bek, R., Hargart, F., Kessler, C. A., Kahle, H., Koroknay, E., Jetter, M., & Michler, P. (2012). Talk:InP quantenpunktbasierter Halbleiterscheibenlaser.
  14. 2011

    1. Wagner, J., Niederbracht, H., Schulz, W.-M., M. Eichfelder, M. J., & and P. Michler. (2011). Talk:Herstellung eines bei 632 nm emittierenden elektrisch gepumpten InP/AlGaInP Quantenpunkt-Kantenemitters.
    2. Plumhof, J. D., Krápek, V., Ding, F., Jöns, K. D., Hafenbrak, R., Klenovský, P., Herklotz, A., Dörr, K., Michler, P., Rastelli, A., & and O. G. Schmidt. (2011). Strain-induced anticrossing of bright exciton levels in single self-assembled GaAs/Al(x)Ga(1-x)As and In(x)Ga(1-x)As/GaAs quantum dots. http://link.aps.org/doi/10.1103/PhysRevB.83.121302
    3. Schwarzbaeck, T., Eichfelder, M., Schulz, W.-M., Rossbach, R., Jetter, M., & Michler, P. (2011). Short wavelength red-emitting AlGaInP-VECSEL exceeds 1.2 W continuous-wave output power. Applied Physics B, 102(4), Article 4. https://doi.org/10.1007/s00340-010-4213-5
  15. 2010

    1. Wiesner, M., Etter, M., Schulz, W.-M., Richter, D., Roßbach, R., Jetter, M., & Michler, P. (2010). Talk:Reduzierung der Versetzungsdichte bei der Heteroepitaxie von III/V auf Si durch InAs-Quantenpunktschichten.
  16. 2009

    1. Schulz, W.-M., Eichfelder, M., Roßbach, R., Jetter, M., & und Peter Michler. (2009). Talk:Elektrisch gepumpter Quantenpunkt-Kantenemitter bei 638 nm.
  17. 2008

    1. Eichfelder, M., W.-M.Schulz, Roßbach, R., Jetter, M., & and P. Michler. (2008). Rückätzen bei der Verwendung von CBr4 als Dotierstoff in As-haltigen Bragg Reflektoren für VCSEL.
  18. 2007

    1. Reischle, M., Beirne, G. J., Roßbach, R., Jetter, M., Schweizer, H., & and P. Michler. (2007). Optical investigations of single pairs of vertically stacked asymmetric InP/GaInP quantum dots. /brokenurl#NULL
  19. 2006

    1. Hermannstädter, C., Beirne, G. J., Wang, L., Rastelli, A., Schmidt, O. G., & and P. Michler. (2006). Time-Resolved Optical Spectroscopy of Tunnel-Coupled Lateral Quantum Dot Molecules. /brokenurl#NULL
    2. Bolse, W. (2006). Instabilität und Selbstorganisation bei der Bestrahlung von Schichtpaketen mit hochenergetischen Ionen.
  20. 2004

    1. Jetter, M., & Roßbach, R. (2004). Talk:Technologietransfer bei InPQuantenpunkten.
  21. 2001

    1. Michler, P., Kiraz, A., Becher, C., Schoenfeld, W. V., Petroff, P. M., Zhang, L., Hu, E., & and A. Imamoglu. (2001). A Quantum Dot Single Photon Source. http://www.sciencemag.org/content/290/5500/2282.abstract
  22. 1999

    1. Aichmayer, G., Jetter, M., Vina, L., Dickerson, J. H., Camino, F., & Mendez, E. O. (1999). Spin-Dependent Exciton-Exciton Interaction in Quantum Wells under an Electric Field. Wiley Online Library. https://doi.org/10.1002/(SICI)1521-3951(199909)215:1<223::AID-PSSB223>3.0.CO;2-3
  23. 1998

    1. Homburg, O., Michler, P., Wenisch, H., Behringer, M., Gutowski, J., & and D. Hommel. (1998). Gain mechanisms in ZnSe based separate-confinement-heterostructure lasers with binary wells. /brokenurl#NULL
To the top of the page