This image shows Raphael Joos

Raphael Joos

MSc.

PhD-Student
Institut für Halbleiteroptik und Funktionelle Grenzflächen
Semiconductor Optics Group

Contact

Allmandring 3
70569 Stuttgart
Deutschland
Room: 1.009

  1. 2024

    1. Corcione, E., Jakob, F., Wagner, L., Joos, R., Bisquerra, A., Schmidt, M., Wieck, A. D., Ludwig, A., Jetter, M., Portalupi, S. L., Michler, P., & Tarín, C. (2024). Machine learning enhanced evaluation of semiconductor quantum dots. Scientific Reports, 14(1), Article 1. https://doi.org/10.1038/s41598-024-54615-7
    2. Vijayan, P., Joos, R., Werner, M., Hirlinger-Alexander, J., Seibold, M., Vollmer, S., Sittig, R., Bauer, S., Braun, F., Portalupi, S., Jetter, M., & Michler, P. (2024). Growth of telecom C-band In(Ga)As quantum dots for silicon quantum photonics. Materials for Quantum Technology, 4. https://doi.org/10.1088/2633-4356/ad2522
    3. Strobel, T., Kazmaier, S., Bauer, T., Schäfer, M., Choudhary, A., Sharma, N. L., Joos, R., Nawrath, C., Weber, J. H., Nie, W., Bhayani, G., Wagner, L., Bisquerra, A., Geitz, M., Braun, R.-P., Hopfmann, C., Portalupi, S. L., Becher, C., & Michler, P. (2024). High-fidelity distribution of triggered polarization-entangled telecom photons via a 36 km intra-city fiber network. Optica Quantum, 2(4), Article 4. https://doi.org/10.1364/OPTICAQ.530838
    4. Thomas, S. E., Wagner, L., Joos, R., Sittig, R., Nawrath, C., Burdekin, P., de Buy Wenniger, I. M., Rasiah, M. J., Huber-Loyola, T., Sagona-Stophel, S., Höfling, S., Jetter, M., Michler, P., Walmsley, I. A., Portalupi, S. L., & Ledingham, P. M. (2024). Deterministic storage and retrieval of telecom light from a quantum dot single-photon source interfaced with an atomic quantum memory. Science Advances, 10(15), Article 15. https://doi.org/10.1126/sciadv.adi7346
    5. Yang, J., Jiang, Z., Benthin, F., Hanel, J., Fandrich, T., Joos, R., Bauer, S., Kolatschek, S., Hreibi, A., Rugeramigabo, E. P., Jetter, M., Portalupi, S. L., Zopf, M., Michler, P., Kück, S., & Ding, F. (2024). High-rate intercity quantum key distribution with a semiconductor single-photon source. Light: Science & Applications, 13(1), Article 1. https://doi.org/10.1038/s41377-024-01488-0
    6. Joos, R., Bauer, S., Rupp, C., Kolatschek, S., Fischer, W., Nawrath, C., Vijayan, P., Sittig, R., Jetter, M., Portalupi, S. L., & Michler, P. (2024). Coherently and Incoherently Pumped Telecom C-Band Single-Photon Source with High Brightness and Indistinguishability. Nano Letters, 24, 28. https://pubs.acs.org/doi/full/10.1021/acs.nanolett.4c01813
  2. 2023

    1. Nawrath, C., Joos, R., Kolatschek, S., Bauer, S., Pruy, P., Hornung, F., Fischer, J., Huang, J., Vijayan, P., Sittig, R., Jetter, M., Portalupi, S. L., & Michler, P. (2023). Bright Source of Purcell-Enhanced, Triggered, Single Photons in the Telecom C-Band. Advanced Quantum Technologies. https://doi.org/10.1002/qute.202300111
  3. 2021

    1. Wang, Q., Maisch, J., Tang, F., Zhao, D., Yang, S., Joos, R., Portalupi, S. L., Michler, P., & Smet, J. H. (2021). Highly Polarized Single Photons from Strain-Induced Quasi-1D Localized Excitons in WSe2. Nano Letters, 21(17), Article 17. https://doi.org/10.1021/acs.nanolett.1c01927
  4. 2020

    1. Yang, J., Nawrath, C., Keil, R., Joos, R., Zhang, X., Höfer, B., Chen, Y., Zopf, M., Jetter, M., Portalupi, S. L., Ding, F., Michler, P., & Schmidt, O. G. (2020). Quantum dot-based broadband optical antenna for efficient extraction of single photons in the telecom O-band. Opt. Express, 28(13), Article 13. https://doi.org/10.1364/OE.395367
To the top of the page